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Abstract: We calculate the gauge terms of the one-loop anomalous dimension matrix for

the dimension-six operators of the Standard Model effective field theory (SM EFT). Combin-

ing these results with our previous results for the λ and Yukawa coupling terms completes

the calculation of the one-loop anomalous dimension matrix for the dimension-six operators.

There are 1350 CP -even and 1149 CP -odd parameters in the dimension-six Lagrangian for

3 generations, and our results give the entire 2499 × 2499 anomalous dimension matrix. We

discuss how the renormalization of the dimension-six operators, and the additional renormal-

ization of the dimension d ≤ 4 terms of the SM Lagrangian due to dimension-six operators,

lays the groundwork for future precision studies of the SM EFT aimed at constraining the ef-

fects of new physics through precision measurements at the electroweak scale. As some sample

applications, we discuss some aspects of the full RGE improved result for essential processes

such as gg → h, h → γγ and h → Zγ, for Higgs couplings to fermions, for the precision

electroweak parameters S and T , and for the operators that modify important processes in

precision electroweak phenomenology, such as the three-body Higgs boson decay h→ Z ℓ+ ℓ−

and triple gauge boson couplings. We discuss how the renormalization group improved results

can be used to study the flavor problem in the SM EFT, and to test the minimal flavor viola-

tion (MFV) hypothesis. We briefly discuss the renormalization effects on the dipole coefficient

Ceγ which contributes to µ→ eγ and to the muon and electron magnetic and electric dipole

moments.
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1 Introduction

The LHC experiments have recently found strong evidence for a scalar particle with mass

126 GeV, and properties consistent with the Higgs boson of the Standard Model (SM) [1, 2].

The absence of any clear evidence of new particles at energies up to several times the scalar

boson mass allows one to parametrize the effects of arbitrary new physics residing at energies

Λ≫ v on physical observables at the electroweak scale in terms of higher dimension operators

built out of SM fields. Experimental measurements of the properties of the scalar boson and

other observables at the electroweak scale can then be used to constrain or determine the

coefficients of the higher dimension operators, and hence the effects of arbitrary beyond-the-

standard-model (BSM) theories with characteristic energy scale Λ in a model independent

way.

In this paper, we adopt the assumption that the scalar boson observed at LHC is the SM

Higgs boson, and that the Higgs mechanism generates the mass of the SM gauge fields and

fermions. Specifically, we assume that the observed scalar boson h is part of a SU(2)L doublet

H with hypercharge yh = 1
2 , and that the electroweak SU(2)L × U(1)Y gauge symmetry is a

linearly realized symmetry in the scalar sector which is spontaneously broken by the vacuum

expectation value of H. These assumptions yield the simplest and most direct interpretation of

the LHC data, and the related experimental observations from LEP and the Tevatron.1. The

SM effective field theory (SM EFT) based on these assumptions consists of the SM Lagrangian

plus all possible higher dimension operators.

The leading higher dimension operators built out of SM fields that preserve baryon and

lepton number are 59 dimension-six operators [8, 9]. It is important to keep in mind that many

of these operators have flavor (generation) indices. For ng = 3 generations, the dimension-

six Lagrangian has 1350 CP -even and 1149 CP -odd couplings, for a total of 2499 hermitian

operators and real parameters. The flavor indices obviously cannot be neglected — there is

no reason in general, for example, why the new physics contribution to µ → eγ should be

1There are other alternatives being investigated, such as a nonlinearly realized SU(2)L × U(1)Y gauge

symmetry in the scalar sector with a light scalar h; see [3–7] and references therein
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the same as the new physics contribution to the muon magnetic moment. Despite the large

number of operators, it is important to realize that the SM equations of motion (EOM) have

been used extensively in reducing the operator basis. As a result, the coefficient of a removed

operator is distributed among the remaining operators.

In this work, we complete the full calculation of the 2499 × 2499 one-loop anomalous

dimension matrix of the 59 dimension-six operators in the operator basis of Ref. [8, 9], including

flavor indices for an arbitrary number of generations ng. We present the gauge coupling terms

in the one-loop anomalous dimension matrix in this paper. Combined with our past results [10–

13], this gives the full one-loop renormalization group evolution (RGE) of the dimension-six

operators of the SM EFT. Having the full one-loop RGE of an independent set of dimension-

six operators in the SM EFT has the advantage that all physical effects are included, and

there can be no cancellation of terms between independent operators.

To precisely interpret any pattern of deviations of SM processes using higher dimensional

operators, one has to map the pattern of deviations observed at the electroweak scale back

to the scale Λ, where the BSM physics was integrated out of the effective field theory. Due

to operator mixing, the pattern of Wilson coefficients that are observed at the low scale

∼ mH is not identical to the pattern of Wilson coefficients at the matching scale Λ. Our

RG calculation determines all of the logarithmically enhanced terms in observables at the

renormalization group scale µ = mH due to RG running from the high-energy scale of new

physics µ = Λ.

There are also other contributions from the finite parts of one-loop graphs at the low scale

µ ∼ mH , which we have not computed. For Λ ∼ 1TeV, ln(Λ2/m2
H) ∼ 4, so there is a modest

enhancement of the log terms over the finite terms. As experiments get more precise, and the

scale Λ is pushed higher, the log terms become even more important relative to the finite terms.

Nevertheless, the calculation of finite terms is important, and these terms will eventually be

required for a precise comparison of data with the SM EFT. The anomalous dimensions can

also be viewed as computing the ln Λ/mH enhanced finite terms. The anomalous dimension

computation is easier because it can be done in the unbroken theory, whereas the computation

of finite terms needs to be done in the broken theory.

An important application of the SM EFT is to test the hypothesis of minimal flavor

violation [14, 15]. The dimension-six operators can have arbitrary flavor structure, and the

renormalization group equations derived in Refs. [10–13] and in this paper give non-trivial

mixing between different particle sectors. MFV assumes that the only sources of U(3)5 flavor

symmetry violation are the Yukawa coupling matrices Ye, Yu and Yd. The SM respects MFV

by definition. Since MFV is formulated in terms of symmetries, it is preserved by the RG

evolution. If the dimension-six Lagrangian respects MFV, then the RG evolution preserves

this property.

The general dimension-six Lagrangian does not have to respect MFV, and RG evolution

then feeds non-minimal flavor violation into different operator sectors. By constraining the

parameters of the SM EFT, one can experimentally test the MFV hypothesis taking this RG

running into account. It is important to test MFV directly in a model-independent way. The
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SM EFT provides a model-independent formalism to test the MFV hypothesis.

The outline of this paper is as follows. In Section 2, we discuss our notation, and the

gauge coupling constant terms reported in this work. Some generalities about the structure

of the anomalous dimension matrix are given in Sec. 2.1. Some interesting cancellations

are pointed out in Sec. 2.3. A detailed presentation of the gauge coupling constant terms

in the RG equations of the dimension-six operator coefficients is relegated to Appendix C.

Section 3 compares the standard operator basis of Refs. [8, 9] with SILH operators [16]. A

brief discussion of MFV and its implications is given in Section 4. Section 5 presents the

main applications of the SM EFT to phenomenology. We discuss the SM parameters at

tree level, and how their values are modified by the SM EFT dimension-six operators. In

particular, we discuss the modifications to the Higgs mass and couplings, and to the gauge

boson masses. We also discuss the scale dependence of the dimension-six operators, and how

the dimension-six operators contribute to the running of the d ≤ 4 parameters of the SM

Lagrangian. The complete expressions for the running of the gg → h, h → γγ and h → γZ

amplitudes are given in Secs. 5.8, 5.9, and 5.10, respectively. In Secs. 5.11 and 5.12, we discuss

the operators corresponding to the electroweak precision data (EWPD) parameters S and T ,

and operators modifying critical processes for precision electroweak phenomenology, such as

triple gauge boson couplings and the three-body decay h→ Z ℓ+ ℓ−. In Sec. 5.13, we discuss

the dipole coefficients Ceγ which contribute to the decay µ→ eγ and to the muon and electron

magnetic and electric dipole moments. We present our conclusions in Section 6. The counting

of parameters in L(6) is summarized in Appendix A, and the conversion of SILH operators to

the standard basis is given in Appendix B.

2 The anomalous dimension matrix

The complete list of 59 independent dimension-six operators is given in Table 1. The operators

are divided into eight classes by field content and number of covariant derivatives. The eight

operator classes are 1 : X3, 2 : H6, 3 : H4D2, 4 : X2H2, 5 : ψ2H3, 6 : ψ2XH, 7 : ψ2H2D

and 8 : ψ4, where X = GAµν ,W
I
µν , Bµν represents a gauge field strength, H denotes the Higgs

doublet scalar field, ψ is a fermion field ψ = q, u, d, l, e, and D is a covariant derivative. The

dimension-six Lagrangian is

L(6) =
∑

i

CiQi (2.1)

where the Qi are the dimension-six operators of Table 1 and the operator coefficients Ci have

dimensions of 1/Λ2. The one-loop anomalous dimension matrix γij is defined by the RG

equation of the operator coefficients

Ċi ≡ 16π2µ
dCi
dµ

= γijCj . (2.2)

The explicit RG equations are given in Appendix C as differential equations, rather than as

elements of the matrix γ. We will use γij to represent the 8× 8 block form of the anomalous

– 3 –



dimension matrix, where the subscripts on γ refer to the eight operator classes i, j = 1, . . . , 8.

For example, γ35 is the 2× 3 anomalous dimension submatrix which mixes the 3 independent

class 5 operator coefficients into the 2 independent class 3 operator coefficients (see Table 1).

Although there are 59 independent operators, many of them have flavor indices which

take on ng = 3 values. Table 2 gives the number of CP -even and CP -odd coefficients for each

operator class. For ng = 3, there are (107n4g + 2n3g + 213n2g + 30ng + 72)/8 = 1350 CP -even

coefficients and (107n4g + 2n3g + 57n2g − 30ng + 48)/8 = 1149 CP -odd parameters, for a total

of 2499 parameters which need to be constrained by experiment. The counting of parameters

is summarized in Appendix A.

Such a large number of terms makes the calculation of the complete anomalous dimension

matrix a formidable task. In Ref. [13], we began by computing the 8× 8 one-loop anomalous

dimension matrix γ44 for the class-4 Higgs-gauge operators X2H2, since these operators con-

tribute directly to the experimentally interesting Higgs production and decay channels gg → h,

h → γγ, and h→ γZ, which first occur at one loop in the SM. The 8× 8 submatrix γ44 has

been subsequently verified by several independent calculations (e.g. Ref. [17]). In Ref. [12], we

calculated the λ-dependent terms of the full anomalous dimension matrix for vanishing gauge

coupling constants, as well as the complete running of the SM d ≤ 4 parameters due to the

dimension-six operators. The running of the SM parameters resulting from the dimension-

six operators is of order m2
H/Λ

2, which is of the same order as the tree-level contribution of

dimension-six operators. The Yukawa-dependent terms of the anomalous dimension matrix

for vanishing gauge couplings were computed in Ref. [10]. In this paper, we complete the full

calculation of the one-loop anomalous dimension matrix of the dimension-six operators by

computing the gauge coupling terms.

The one-loop anomalous dimension matrix has the usual 1/(16π2) suppression of a one-

loop calculation. However, there are several anomalous dimensions with large numerical fac-

tors. In Ref. [12], for example, we found that

16π2µ
d

dµ
CH = 108λCH + . . . . (2.3)

Since m2
H = 2λv2, the anomalous dimension coefficient is 108λ = 54m2

H/v
2 ≃ 14, independent

of the normalization convention for the quartic coupling λ. In the study of the Yukawa

coupling terms of Ref. [10], the numerical factors were generally O(1). These Yukawa terms

give interesting nontrivial flavor mixing between the various operators. The gauge terms

calculated in this paper also contain several large coefficients. For example, the mixing of the

class 4 operators X2H2 into the class 2 operator H6 gives

16π2µ
d

dµ
CH = −(48g41 y4h + 12g21g

2
2y

2
h)CHB . . . (2.4)

The lengthiest contributions to gauge coupling constant terms come from the well-known

penguin graph Fig. 1. The penguin graph itself is simple to compute. However, there are

25 possible ψ4 operators in the L(6) Lagrangian, and the penguin graph is proportional to
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Figure 1. A penguin diagram. The solid square is a ψ4 vertex from L(6), and the dot is a SM gauge
coupling.

DµX
µν , which is replaced by a gauge current summed over all fermion and scalar fields. The

resulting four-fermion and fermion-scalar operators then have to be Fierzed to the canonical

operator basis, resulting in the bulk of the terms given in Appendix C.

One finds a substantial amount of operator mixing in the SM EFT, and such mixing

affects observables measured at the electroweak scale in a manner which must be unraveled to

understand BSM theories. One of the consequences of this mixing is the propagation of CP

violation through different sectors of the Lagrangian. For instance, dipole operators receive

contributions from CP violating class 4 operators (that enter, e.g., h→ γZ at tree level), the

latter are therefore subject to electric dipole moment constraints, see Sec. 5.13. On the other

hand, it is already known [13] that mixing effects are relevant for studies of h→ γγ.

2.1 The structure of γij

The complication of dealing with a large operator basis naturally leads to the desire to simplify

the calculation, or to look for hidden structure in the anomalous dimension matrix to more

easily understand the physics of the one-loop RGE flow. In Ref. [12], we showed that the

structure of the anomalous dimension matrix can be understood using Naive Dimensional

Analysis (NDA) [18]. The argument is simplest using rescaled operators Q̂i. The rescaled

operators Q̂i are given by g2X3, H6, H4D2, g2X2H2, yψ2H3, gyψ2XH, ψ2H2D and ψ4,

where each gauge field strength X has been rescaled by a gauge coupling g, and the chirality-

flip operators ψ2H3 and ψ2XH, which change chirality by one unit, have been rescaled by

an additional Yukawa coupling y. The dimension-six Lagrangian can be rewritten in terms of

the rescaled operators and their corresponding coefficients Ĉi,

L(6) =
∑

i

CiQi =
∑

i

ĈiQ̂i . (2.5)

The RG equations for the original and rescaled operator coefficients are given by

Ċi = γij Cj,
˙̂
Ci = γ̂ij Ĉj, (2.6)
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where the one-loop anomalous dimension matrices γij and γ̂ij are related to each other by the

rescaling factors and their derivatives. In Ref. [12], we showed that the anomalous dimension

matrix γ̂ for the rescaled operators has entries proportional to

γ̂ ∝
(

λ

16π2

)nλ
(

y2

16π2

)ny
(

g2

16π2

)ng

, N = nλ + ny + ng (2.7)

where N , the perturbative order of the anomalous dimension, is defined as the sum of the

number of factors nλ of the Higgs self-coupling λ, the number of factors ny of y2, and the

number of factors ng of g2. For the rescaled dimension-six operators, N ranges from 0 to

4. In Ref. [11], we derived a general formula for the perturbative order N of the anomalous

dimension matrix γ̂ij ,

N = 1 + wi − wj , (2.8)

where wi is the NDA weight of the operators Q̂i in the ith class [11]. The class 2 operator Q̂H
has NDA weight w2 = 2; the operators in classes {3, 5, 7, 8} have NDA weight 1; the operators

in classes {4, 6} have NDA weight 0; and the class 1 operators have NDA weight w1 = −1.
Using Eq. (2.8), the possible coupling constant dependences of γ̂ij are obtained. Our previous

work calculated all anomalous dimensions with nontrivial nλ and ny with ng = 0. The present

work completes the calculation of all terms with ng 6= 0.

Although the coupling constant dependence of the anomalous dimension matrix is simplest

for the NDA rescaled operators, the RGE in Refs. [10, 12, 13] and in this work are quoted

in terms of the original unrescaled operators Qi of Refs. [8, 9]. The possible entries of γij
were classified in Ref. [12] by studying all possible one-loop diagrams including EOM terms.

The classification is a bit subtle. The non-zero entries arise directly from diagrams which

contribute to a given term, but also indirectly via EOM. For example, the H4D2 − H4D2

entry of the anomalous dimension matrix is computed from graphs with one insertion of a

H4D2 operator, QH� or QHD, with 4 external H lines. These graphs contribute to the γ33
submatrix for the running of the coefficients CH� and CHD. The graphs contributing to γ33
also require a counterterm proportional to the EOM operator EH� of Ref. [12]. This operator

can be eliminated in favor of other operators such as the ψ2H3 operators in the standard

basis. Thus, the γ33 graphs also contribute to the γ53 submatrix via the EOM, even though

they do not have any external fermion lines.

The NDA weights wi for the NDA rescaled operators Q̂i of the eight operator classes,

and the coupling constant dependence of the allowed anomalous dimensions γ̂ij are shown

in Table 3, with the operators ordered according to decreasing NDA weight. Now that the

entire matrix has been computed, we can compare with the classification of Ref. [12]. The

cross-hatched entries in the table are anomalous dimension entries which could exist based on

the allowed diagrams, but which vanish by explicit computation. These entries vanish because

the relevant diagram vanishes, has no infinite part despite being naively divergent, or, in some

interesting cases, by cancellation between different contributions such as a direct contribu-
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tion to γij and an indirect contribution obtained by using the EOM. These cancellations are

discussed further in Sec. 2.3.

The diagonal blocks in Table 3 have N = 1 since wi = wj . Blocks one below the diagonal

have N = 0, whereas blocks one above the diagonal have N = 2, etc. When N is less than

0, γ vanishes, and we find that this is always the case. However, there are many additional

anomalous dimensions which vanish. Indeed, almost all of the N = 0 entries vanish. The

notable exception of a N = 0 submatrix which does not vanish is γ68 which mixes class 8

four-fermion operators ψ4 into the class 6 dipole operators ψ2XH in violation of the general

“no tree-loop mixing” claim of Refs. [19–21]. Other examples which violate no tree-loop mixing

exist [22]. “Tree-loop” classification [23] of terms in an EFT Lagrangian has limited usefulness,

and does not apply in general when the UV theory generating the dimension-six operators

is itself an EFT, or is a strongly interacting theory. Attempts to broaden this classification

scheme in a very general manner relied critically on the assumption of minimal coupling.

However, in Ref. [24], we showed that the concept of minimal coupling is ill defined in general.

2.2 Checks of the calculation

The calculations in this paper are done in background field with gauge fixing parameter ξ,

and cancellation of ξ-dependence provides a check on the results. The gauge dependence only

cancels for gauge-invariant interactions, i.e. if the relations

yq = yd + yh, yq = yu − yh, yl = ye + yh, (2.9)

are satisfied. Although the expressions for the anomalous dimensions have been written in

terms of all six hypercharges, yi cannot be thought of as varying independently, but must

satisfy the constraints Eq. (2.9). A check of the results that follows from custodial SU(2)

symmetry is discussed at the end of Sec. 5.11.

The SM Yukawa couplings

LYukawa = −
[
H†jdr [Yd]rs qjs + H̃†jur [Yu]rs qjs +H†jer [Ye]rs ljs + h.c.

]
, (2.10)

where r, s are flavor indices and j is an SU(2) index, are only gauge invariant because the 2 of

SU(2) is self-conjugate, so thatHj and H̃j = ǫjkH
† k belong to the same SU(2) representation.

The SU(2) group cannot be generalized to a SU(N) group. While some of the SU(2) group

theory factors have been written as Casimirs such as cA,2 and cF,2, the results are only valid

when they take on their SU(2) values cA,2 = 2 and cF,2 = 3/4.

The SU(3) results are written for an SU(Nc) theory. Anomaly cancellation does not hold

for the SU(Nc)
2×U(1)Y anomaly for arbitrary Nc, but the results can still be useful in other

contexts for the SU(Nc) anomalous dimensions. The SU(3) Fierz identity

TAαβ T
A
λσ =

1

2
δασδλβ −

1

2Nc
δαβδλσ (2.11)
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Figure 2. Graphs with insertions of the X3 operator which cancel after using the equations of motion.

has been used to rearrange color indices and put operators into standard form. This identity

is valid for the fundamental representation of SU(Nc), but is not valid for arbitrary represen-

tations. Thus, the quadratic Casimir cF,3 is equivalent to (N2
c − 1)/(2Nc), and the fermions

must be in SU(Nc) fundamental or anti-fundamental representations.

2.3 Cancellations

The one-loop anomalous dimension matrix does not contain all possible terms that can arise

from the allowed one-loop graphs and the EOM. In a few cases, the entries vanish because

the graph has no divergent part. An example from Ref. [12] is the y4 contribution to γ27, or

H6 − ψ2H2D mixing.

There also are a few cases with interesting non-trivial cancellations which arise when

different contributions to the same anomalous dimension are added together after using the

equations of motion. An example is the contribution of insertions of the CP -even operators

X3 to the anomalous dimension from the graphs shown in Fig. 2. The divergent part of the

first graph is proportional to

A1 = −cA,2g2CWDµW I
µλDνW

I νλ − cA,3g3CGDµGAµλDνG
Aνλ. (2.12)

The divergent part of the sum of the second and third graphs is proportional to

A2 = −ig22cA,2CWDµH
†τ IDνHW

I
µν . (2.13)

There is no gluon term, since gluons do not couple to the Higgs field. The divergent part of

the fourth graph is proportional to

A3 = g22cA,2CWD
µW I

µνj
I ν
ψ + g23cA,3CGD

µGAµνj
Aν
ψ , (2.14)

where

jI µψ =
∑

ψ=q,l

ψ γµ
1

2
τ I ψ, jAµψ =

∑

ψ=q,u,d

ψ γµTA ψ, (2.15)
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are the SU(2) and SU(3) fermion currents, respectively. The operator Eq. (2.13) is equal

to g2cA,2CWPHW , where PHW is given in Eq. (3.3). Integrating by parts, and writing the

commutator of two covariant derivatives as a field-strength tensor gives the identity

PHW = −ig2DµH
†τ IDνH W Iµν

= g2j
I ν
H DµW I

µ ν −
1

4
g22H

†HW I
µνW

Iµν − 1

2
g1g2yhH

†τ IHW I
µνBµν , (2.16)

where

jI µH =
i

2
(H† τ I

←→
D µH), (2.17)

is the Higgs doublet SU(2) current. The total is

A1 +A2 +A3 = −g2cA,2CWDµW I
µλ

[
DνW

I νλ − g2jI λψ − g2jI λH
]
− cA,3g3CGDµGAµλ

[
DνG

Aνλ − g2jAλψ

]

− g2cA,2CW
[
1

4
g22H

†HW I
µνW

Iµν +
1

2
g1g2yhH

†τ IHW I
µνBµν

]
. (2.18)

Using the gauge field equations of motion

DµW
I µν = g2

(
jI µH + jI µψ

)
, DµG

Aµν = g3j
Aµ
ψ , (2.19)

only the second line survives,

A1 +A2 +A3 = −g2cA,2CW
[
1

4
g22H

†HW I
µνW

Iµν +
1

2
g1g2yhH

†τ IHW I
µνBµν

]
. (2.20)

The gluon term CG cancels completely and most of the CW term cancels. There is a residual

contribution from Eq. (2.20) to the anomalous dimension of CHW and CHWB, the coefficients

of the X2H2 Higgs-gauge boson operators. The graphs in Fig. 2 contribute to the running of

CHW and CHWB even though none of the diagrams have two external gauge bosons and two

external Higgs lines, the field content of X2H2 operators. The cancellation of CG and CW
terms in various anomalous dimensions is the reason for the absence of several terms in the

last column of Table 3.

The C
W̃

and CG̃ contributions to the anomalous dimension arise from the same graphs

as in Fig. 2, with the insertions of the CP -odd operators X̃XX. In this case, one obtains

Eqs. (2.12) and (2.14) with DµW I
µν and DµGAµν replaced by DµW̃ I

µν and DµG̃Aµν , respectively,

and Eq (2.13) with W I
µν replaced by W̃ I

µν . The equations of motion for X̃ are DµX̃µν = 0,

rather than Eq. (2.19), so naively there can be a difference between the C
W̃ ,G̃

and CW,G
contributions to the anomalous dimension. However, the total sum A1 +A2 +A3 is

− g2cA,2CW̃D
µW̃ I

µλ

[
DνW

I νλ − g2jI λψ − g2jI λH
]
− cA,3g3CG̃D

µG̃Aµλ

[
DνG

A νλ − g3jAλψ

]

− g2cA,2CW̃
[
1

4
g22H

†HW̃ I
µνW

Iµν +
1

2
g1g2yhH

†τ IH W̃ I
µνBµν

]
, (2.21)
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instead of Eq. (2.18). The first lines in both Eq. (2.18) and Eq. (2.21), which would have

produced a difference in the C
W̃ ,G̃

and CW,G contributions, are proportional to the gauge field

equations of motion (2.19) and vanish. Thus, the contributions to the anomalous dimension

from the CP -odd coefficients C
W̃ ,G̃

are the same as the contributions from the CP -even

coefficients CW,G.

Another interesting cancellation occurs in the contribution of the ψ2XH dipole operators.

The coefficients CeW , etc. of these operators will be denoted generically by CψX , where ψ =

e, u, d. The dipole operators contribute to the running of ψ2H3 coefficients CψH , such as CeH ,

and to the running of ψ2H2D coefficients CHψ, such as CHe. The anomalous dimension for

the running of CψH gets multiple contributions from CψX and C∗
ψX which arise from graphs

with insertions of the ψ2XH dipole operators and their hermitian conjugates. As above,

the multiple contributions arise from using the EOM to bring all divergences to the canonical

basis. The total contribution of C∗
ψX to the running of CψH cancels after using the hypercharge

constraints Eq. (2.9), even though individual contributions do not vanish. The contribution

of CψX to the running of CψH does not cancel. The total contribution of both CψX and C∗
ψX

to the running of the ψ2H2D coefficients CHψ exactly cancels, which is why there is no g2y2

entry in the anomalous dimension γ76 from ψ2H2D-ψ2XH mixing in Table 3.

The contributions of the dipole operators and the gauge operators with X and X̃ are

related by factors of i. This simple factor follows from the complex self-duality of σµνPR.

There is no C∗
ψX contribution to the running ĊψX , or to the runnings Ċ

(1)
quqd, Ċ

(8)
quqd and Ċ

(3)
lequ,

which are the ψ4 operators to which the dipole operators contribute.

The examples above indicate that the RG contribution of the dipole operators respects

holomorphy in CψX .

2.4 Previous work

Several of the gauge coupling terms of the one-loop anomalous dimension matrix have been

calculated before. However, we emphasize that with the results reported in this work, we have

determined the complete one-loop anomalous dimension matrix for dimension-six operators

of the SM EFT for the first time.

Previous calculations of individual elements of the anomalous dimension matrix include

the following works.2 The anomalous dimension of QG and QG̃ were determined in Refs. [25–

27]. We agree with this result. Ref. [25] computed the anomalous dimension of dimension-five

and dimension-six operators in QCD. Parts of our calculation in which the Higgs field can

be treated as an external constant field agree with these results. The renormalization of

four-fermion operators has been studied for many years in the context of the low-energy

theory of weak interactions, and provides a check on the ψ4 − ψ4 anomalous dimension. The

complete one-loop RGE of the operators in class 4 was calculated for the first time in Ref. [13].

Previously, some individual terms in this running result were calculated in Refs. [28–31], and

2Due to the number of operators renormalized, and the fragmentary literature on the subject, we apologize

in advance to authors whose works are overlooked in this discussion.
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these terms are consistent with our calculation. Ref. [19] calculated the mixing of dipole

operators QuG, QuW and QuB with the combination of Wilson coefficients QHW , QHB and

QHWB that corresponds to h→ γ γ, see Section 5.9, which corresponds to a set of entries in

γ46. We agree with these results. Ref. [32] reports the running of the operators QuH and QuG
due to the QCD coupling, which corresponds to entries in γ55 and γ66. We agree with the

results of this paper.

The papers mentioned in the previous paragraph allow a relatively direct comparison

between results computed in the same operator basis. Many other results in the literature are

reported in a different basis, making a comparison difficult. Ref. [20] presents a few terms in

the anomalous dimension matrix without flavor indices (i.e. for ng = 1), and only including

the top Yukawa coupling. The exact translation between such partial results and this work

requires that a complete non-redundant operator basis be defined, which often is not the case.

Ref. [20] does not define such a mapping to allow us to compare our results to the terms

reported, see the next Section for more discussion on this point. Nevertheless, some other

classic past results in Refs. [33–46] overlap with some of the results presented here, as do some

more recent works [47–54].

3 SILH operators

A minimal basis of dimension-six operators is obtained by removing all redundant operators

using the SM EOM. This paper uses the dimension-six operators Qi of Ref. [9] which has

no redundancies. It is a well-established result in quantum field theory that operators which

vanish by the classical equations of motion do not contribute to S-matrix elements even at the

quantum level [55], and so EOM can be used to simplify the effective Lagrangian. Formally,

the redundant operators can be eliminated by a change of variables in the functional integral.

It is clearly a nuisance to use a redundant operator basis.

Including redundant operators introduces extra parameters in the Lagrangian which can

be eliminated by field redefintions, and do not contribute to any measurable quantity [55].

This redundancy is not always obvious, since intermediate steps and partial results can depend

on the redundant parameters. It is only when the complete S-matrix element is carefully

computed that one sees that certain combinations of parameters drop out due to the EOM.

Redundant operators have led to enormous confusion in the literature over many decades, for

example, this was a source of significant confusion in the early days of heavy quark effective

theory. For this reason, when choosing a basis, it is advantageous to not introduce redundant

parameters.

Recently, some authors [20, 56, 57] have advocated using the “SILH-basis.” The definition

of this operator basis varies in the papers, and the original SILH paper [16] does not define

a complete basis. We will discuss the version presented in Ref. [56]. The basis of Refs. [8, 9]

contains nine CP -even operators made out of only gauge and Higgs fields,

QG, QW , QH , QH�, QHD, QHG, QHW , QHB, QHWB. (3.1)
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The SILH basis defined in Ref. [56] contains 14 CP -even operators made out of only gauge

and Higgs fields with the operator coefficients

c̄H , c̄T , c̄6, c̄W , c̄B , c̄HW , c̄HB , c̄γ , c̄g, c̄3W , c̄3G, c̄2W , c̄2B , c̄2G. (3.2)

The six operators QG, QW , QH , QH�, QHG, QHB coincide with the operators corresponding to

c̄3G, c̄3W , c̄6, c̄H , c̄g, c̄γ , up to simple rescalings by couplings. In Ref. [56], it is argued that the

three operators corresponding to c̄2W , c̄2B and c̄2G can be removed by the SM EOM in favor

of other operators retained in the SILH operator basis. This removal leaves five flavor-singlet

operators3

PHW = −i g2 (DµH)† τ I (DνH)W I
µ ν , PHB = −i g1 (DµH)† (DνH)Bµ ν ,

PW = − i g2
2

(H† τ I
←→
D µH) (DνW I

µ ν), PB = − i g1
2

(H†←→D µH) (DνBµν),

PT = (H†←→D µH) (H†←→D µH), (3.3)

in the SILH basis, instead of the three operators

QHW = H†HW I
µνW

µν
I , QHWB = H† τI HW I

µν B
µν , QHD = (H†DµH)⋆ (H†DµH),

(3.4)

in the standard basis.

Since Eq. (3.3) has five operators, and Eq. (3.4) has only three operators, two additional

operators from the standard Qi basis can be eliminated if the operators in Eq. (3.3) are used

instead of those in Eq. (3.4). The five Pi operators can be written in terms of the standard basis

Qi using the equations of motion, and the conversion is given in Appendix B. The relations

involve non-bosonic Qi operators, a fact that is used in Ref. [56] to remove the lepton-Higgs

operators Q
(1)
Hl and Q

(3)
Hl together with QHW , QHWB and QHD in favor of the 5 Pi operators

of Eq. (3.3). However, only the flavor-singlet combinations

Q
(1)
Hl
pp

, Q
(3)
Hl
pp

, (3.5)

enter the relations in Eq. (B.1). One can modify the singlet part of the coefficients of Q
(1)
Hl

and Q
(3)
Hl by the shift

C
(1,3)
Hl
rs

→ C
(1,3)
Hl
rs

+ a(1,3)δrs, (3.6)

and absorb the change in the Pi operator coefficients. The constants a(1,3) can be chosen to

eliminate the trace Eq. (3.5), or to set the electron operator C
(1)
Hl
ee

= 0, etc. However, the

coefficients of the flavor non-singlet parts

C
(1)
Hl
rs

− 1

ng
δrsC

(1)
Hl
pp

, C
(3)
Hl
rs

− 1

ng
δrsC

(3)
Hl
pp

(3.7)

3The SILH basis operators are denoted by Pi to avoid confusion with similarly labelled operators Qi in the

standard basis.
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cannot be removed, and must be retained. Removal of the flavor-singlet portions of C
(1)
Hl and

C
(3)
Hl makes the treatment of BSM flavor violation in the SILH basis cumbersome. Furthermore,

a careful and consistent treatment of EOM effects is necessary in all calculations using the

“SILH-basis,” otherwise the basis remains redundant.

The lepton-Higgs operators Q
(1)
Hl and Q

(3)
Hl can be removed completely if one assumes

completely unbroken U(3)5 flavor symmetry of the UV theory, so that the coefficients of

these operators are unit matrices in flavor space. This assumption was implicitly adopted

in the initial work of Ref. [58] that identified this field redefintion, and it is also adopted in

Refs. [20, 56, 57]. This assumption is stronger than assuming MFV, which only says that the

coefficients of the lepton operators is a function of Y †
e Ye, not that it is proportional to the unit

matrix. Ref. [20] computes a few of the anomalous dimensions in the case of a U(3)5 flavor-

symmetric BSM sector, in an attempt to circumvent this difficulty. While the assumption of

flavor-symmetric BSM physics can be adopted, it limits the applicability of the EFT. One of

the important features of the SM EFT is that it can be used to test MFV, but this is only

possible if MFV is not put in by hand. Many SILH basis results cannot be used to test MFV

in a straightforward manner, since stronger assumptions than MFV have already been built

into the formalism.

In reducing the SILH operators to the operator basis of Ref. [9], the EOM relations

in Appendix B also include the SM dimension-four operator (H†H)2, which is the usual

λ(H†H)2 Higgs interaction term. This means that the connection of the two bases also

involves the redefinition of SM parameters. Explicitly, the RGE for the SM parameters also

have contributions from dimension-six operators, as pointed out in Ref. [12]. These effects are

not taken into account in Ref. [20] preventing a comparison of our results with Ref. [20].4

Also note that Ref. [20] advocates retaining redundant operators in intermediate steps

of the analysis. Retaining redundant operators in partial results for an anomalous dimension

matrix introduces spurious gauge and scheme dependence, see the discussion in Ref. [12]. It is

not defined in Ref. [20] how the partial results for the anomalous dimension matrix presented

there can be converted to the full results valid for any BSM flavour structure. This is another

reason we cannot compare our results with the partial calculation in Ref. [20].

4 Minimal Flavor Violation

The SM EFT provides a way to test the hypothesis of MFV in new physics. The SM has a

U(3)5 symmetry in the limit of vanishing Yukawa couplings under which

q → Uqq, l→ Ull, u→ Uuu, d→ Udd, e→ Uee. (4.1)

The MFV hypothesis [14, 15] is that the only source of flavor violation is the Yukawa matrices,

so that the full theory is flavor invariant if the Yukawa matrices transform as

Yu → UuYuU
†
q , Yd → UdYdU

†
q , Ye → UeYeU

†
l . (4.2)

4For an example of this effect, see Sec. 5.5, Eq. 5.34.
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If the new physics respects MFV, then the SM EFT derived from it also does. This

assumption severely restricts the dimension-six coefficients. The coefficients of the flavor

invariant operators in classes 1–4 can only depend on the flavor invariants5

Tr f(Y †
e Ye), Tr f(Y †

d Yd, Y
†
uYu) , (4.3)

In an EFT setup, the dependence on such invariants can be absorbed into an effective coeffi-

cient.

The ψ2H3 operators have coefficients

CdH
rs

=
[
f(Y †

d Yd, Y
†
uYu)Y

†
d

]
rs
, CuH

rs
=
[
f(Y †

d Yd, Y
†
uYu)Y

†
u

]
rs
, CeH

rs
=
[
f(Y †

e Ye)Y
†
e

]
rs
,

(4.4)

where it is implicit that the above functions also can depend on the invariants of Eq. (4.3).

For example, the quark functions can depend on the lepton invariant Tr f(Y †
e Ye) and vice-

versa. Analogous formulae to Eq. (4.4) hold for the ψ2XH dipole operators {CeW , CeB},
{CuG, CuW , CuB} and {CdG, CdW , CdB}, respectively.

The ψ2H2D operators have coefficients

C
(1,3)
Hq
rs

=
[
f(Y †

d Yd, Y
†
uYu)

]
rs
, C

(1,3)
Hl
rs

=
[
f(Y †

e Ye)
]
rs
,

CHu
rs

= aδrs +
[
Yu f(Y

†
d Yd, Y

†
uYu)Y

†
u

]
rs
, CHd

rs
= aδrs +

[
Yd f(Y

†
d Yd, Y

†
uYu)Y

†
d

]
rs
,

CHe
rs

= aδrs +
[
Ye f(Y

†
e Ye)Y

†
e

]
rs
, CHud

rs
=
[
Yu f(Y

†
d Yd, Y

†
uYu)Y

†
d

]
rs
. (4.5)

Again, dependence of the above functions of the invariants of Eq. (4.3) is implicit.

Similar expressions hold for the ψ4 operators, with coefficients in flavor space which are

products of the cases considered above. As is well-known, one can make U(3)5 rotations to

bring the Yukawa matrices into the form

Ye → diag(me,mµ,mτ ), Yd → diag(md,ms,mb), Yu → diag(mu,mc,mt)K, (4.6)

where K is the CKM matrix. At this stage, the masslessness of neutrinos allows for the

diagonalization of Ye and the absence of flavor violation in the lepton sector. The introduction

of neutrino masses can be accomplished in the model-independent spirit of this paper via the

d = 5 Weinberg Operator. This operator is naturally suppressed by a scale higher than Λ

since it violates lepton number. Assuming this hierarchy of scales, the RGEs of d = 5 and

d = 6 operators are independent and the inclusion of neutrino masses is orthogonal and does

not affect the results presented here.

Since MFV is implemented as a symmetry which is respected by the SM Lagrangian, the

RG evolution of L(6) maintains MFV if the coefficients at scale Λ satisfy the MFV hypothesis.

5In this section, f denotes an arbitrary function, and all the fs do not have to be the same. Some U(1)s are

anomalous, and one also can have dependence on certain combinations of detYu,d,e and the θ angles [59–61].
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In this case, the flavor structure of L(6) is the same as corresponding amplitudes computed

from loop graphs in the SM. However, it is important to emphasize that the assumption of

MFV does not imply that the coefficients of ψ2H2D and ψ4 operators are proportional to

the unit matrix, which is a stronger assumption that requires that the functions f have a

perturbative expansion in Y with small coefficients. In view of Eq. (4.6), this expansion in

powers of Yukawa matrices can be justified for off-diagonal elements inducing flavor violation,

as customary, but not for the diagonal entry of the third generation, see Ref. [62] for some

discussion on this point.

One of the important applications of the SM EFT is to test the hypothesis of MFV in

BSM physics in a model-independent way. Interestingly, the full SM RGE transfers flavor

violation in one set of operators to other operator sectors. Testing the consistency of MFV in

low-energy measurements, taking into account the full SM EFT, is important for increasing

our understanding of the flavor structure of new physics. A quick look at the anomalous

dimensions in Refs. [10, 12] and Appendix C should convince the reader that any flavor ansatz

not based on a symmetry will not be preserved by the RGE.

5 Phenomenology

In this section, we outline the generalization of the analysis of observables measured at the

electroweak scale from the SM to the SM EFT, and how the full one-loop RGE for the

dimension-six Wilson coefficients measured at a low scale ∼ v can be used to obtain the Wilson

coefficients at the high scale Λ. An important point we emphasize is that if constraints at

the scale v are to be mapped to a high scale BSM theory, then all corrections of the order

v2/(16π2Λ2) in the SM EFT have to be included in the analysis. Otherwise, the analysis is

inconsistent.

Our aim is not to perform a precision analysis, but to simply outline some issues that a

precision Higgs and electroweak phenomenology program should take into account, and how

the one-loop RGE result aids in this program. Some aspects of how the SM EFT modifies SM

phenomenology have been discussed previously in Refs. [20, 56, 63, 64] and other works. How-

ever, many aspects of how the SM EFT affects precision predictions have not been discussed

in detail before, and we outline some of them below.

The Lagrangian of the SM EFT is

L = LSM + L(6) + . . . (5.1)

where the . . . denote operators of dimension greater than six suppressed by additional powers

of Λ. The dimension-six terms L(6) can be treated perturbatively, i.e. we only need to include

these to first order, since second-order contributions from L(6) are as important as first-order
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contributions from L(8), etc. The SM Lagrangian is

LSM = −1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (DµH
†)(DµH) +

∑

ψ=q,u,d,l,e

ψ i /Dψ

− λ
(
H†H − 1

2
v2
)2

−
[
H†jd Yd qj + H̃†juYu qj +H†je Ye lj + h.c.

]
, (5.2)

and L(6) is defined in Eq. (2.1). We start by discussing the modification of the SM parameters

at tree-level due to L(6).

5.1 Higgs mass and self-couplings

The dimension-six Lagrangian of the SM EFT alters the definition of SM parameters at tree

level in a number of ways. The operator QH changes the shape of the scalar doublet potential

at order v2/Λ2 to

V (H) = λ

(
H†H − 1

2
v2
)2

− CH
(
H†H

)3
, (5.3)

yielding the new minimum

〈H†H〉 = v2

2

(
1 +

3CHv
2

4λ

)
≡ 1

2
v2T , (5.4)

on expanding the exact solution (λ−
√
λ2 − 3CHλv2)/(3CH) to first order in CH . The shift

in the vacuum expectation value (VEV) is proportional to CHv
2, which is of order v2/Λ2.

The scalar field can be written in unitary gauge as

H =
1√
2

(
0

[1 + cH,kin]h+ vT

)
, (5.5)

where

cH,kin ≡
(
CH� −

1

4
CHD

)
v2, vT ≡

(
1 +

3CHv
2

8λ

)
v. (5.6)

The coefficient of h in Eq. (5.5) is no longer unity, in order for the Higgs boson kinetic term

to be properly normalized when the dimension-six operators are included. The kinetic terms

L = (DµH
†)(DµH) + CH�

(
H†H

)
�
(
H†H

)
+CHD

(
H†DµH

)∗ (
H†DµH

)
, (5.7)

and the potential in Eq. (5.3) yield6

L =
1

2
(∂µh)

2 − cH,kin

v2T

[
h2(∂µh)

2 + 2vh(∂µh)
2
]
− λv2T

(
1− 3CHv

2

2λ
+ 2cH,kin

)
h2

− λvT
(
1− 5CHv

2

2λ
+ 3cH,kin

)
h3 − 1

4
λ

(
1− 15CHv

2

2λ
+ 4cH,kin

)
h4 +

3

4
CHvh

5 +
1

8
CHh

6,

(5.8)

6One can always replace v by vT in terms that depend on the L
(6) coefficients, since the change is order

1/Λ4.
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for the h self-interactions. The Higgs boson mass is

m2
H = 2λv2T

(
1− 3CHv

2

2λ
+ 2cH,kin

)
. (5.9)

5.2 Yukawa couplings

The definition of the fermion mass matrices and the Yukawa matrices are modified by the

presence of ψ2H3 operators. The Lagrangian terms in the unbroken theory

L = −
[
H†jdr [Yd]rs qjs + H̃†jur [Yu]rs qjs +H†jer [Ye]rs ljs + h.c.

]

+

[
C∗
dH
sr

(
H†H

)
H†jdrqjs + C∗

uH
sr

(
H†H

)
H̃†jurqjs + C∗

eH
sr

(
H†H

)
H†jerljs + h.c.

]
, (5.10)

yield the fermion mass matrices

[Mψ]rs =
vT√
2

(
[Yψ]rs −

1

2
v2C∗

ψH
sr

)
, ψ = u, d, e (5.11)

in the broken theory. The coupling matrices of the h boson to the fermions L = −h uY q+ . . .
are

[Yψ]rs =
1√
2
[Yψ]rs [1 + cH,kin]−

3

2
√
2
v2C∗

ψH
sr

=
1

vT
[Mψ]rs [1 + cH,kin]−

v2√
2
C∗
ψH
sr
, ψ = u, d, e (5.12)

and are not simply proportional to the fermion mass matrices, as is the case in the SM. In

general, the fermion mass matrices and Yukawa matrices will not be simultaneously diagonal-

izable (these parameters have different RGEs), so that the couplings of the Higgs boson to

the fermions will not be diagonal in flavor due to terms of order v2/Λ2.

5.3 GF

The value of the VEV in the SM is obtained from the measurement of GF in µ decay, µ− →
e− + ν̄e + νµ. Define the local effective interaction for muon decay as

LGF
= −4GF√

2
(ν̄µ γ

µPLµ) (ē γµPLνe) . (5.13)

The parameter GF is fixed by measuring the muon lifetime. In the SM EFT,7

−4GF√
2

= − 2

v2T
+

(
C ll
µeeµ

+ C ll
eµµe

)
− 2

(
C

(3)
Hl
ee

+ C
(3)
Hl
µµ

)
. (5.14)

The Cll terms are from the four-lepton interaction in L(6), and the C
(3)
Hl terms are from W

exchange, where one Wlν vertex is from the Q
(3)
Hl operator, and the other is the usual SM

7e and µ are generation indices 1 and 2, and are not summed over.
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vertex. There are contributions to µ decay from C ll
µers

, and C ll
rsµe

with r 6= e, s 6= µ, as well

as from (LL)(RR) currents, but these do not interfere with the SM amplitude, and their

contributions to the muon lifetime are higher order in 1/Λ.

Similar expressions hold for other weak decay processes, and GF in τ decay, or in quark

decays, can differ from µ decay due to the Cll and C
(3)
Hl terms.

5.4 Gauge boson masses and couplings

The definition of the gauge fields and the gauge couplings are affected by the dimension-six

terms. The relevant dimension-six Lagrangian terms are

L(6) = CHGH
†HGAµνG

Aµν + CHWH
†HW I

µνW
Iµν + CHBH

†HBµνB
µν + CHWBH

†τ IHW I
µνB

µν

+ CGf
ABCGAνµ GBρν GCµρ + CW ǫ

IJKW Iν
µ W Jρ

ν WKµ
ρ . (5.15)

In the broken theory, the X2H2 operators contribute to the gauge kinetic energies,

LSM + L(6) = −1

2
W+
µνW

µν
− −

1

4
W 3
µνW

µν
3 −

1

4
Bµν B

µν − 1

4
GAµν G

Aµν +
1

2
v2T CHGG

A
µν G

Aµν ,

+
1

2
v2T CHWW

I
µνW

Iµν +
1

2
v2T CHBBµνB

µν − 1

2
v2T CHWBW

3
µνB

µν , (5.16)

so the gauge fields in the Lagrangian are not canonically normalized, and the last term in

Eq. (5.16) leads to kinetic mixing between W 3 and B. The mass terms for the gauge bosons

from LSM and L(6) are

L =
1

4
g22v

2
TW

+
µ W

−µ +
1

8
v2T (g2W

3
µ − g1Bµ)2 +

1

16
v4TCHD(g2W

3
µ − g1Bµ)2 . (5.17)

The gauge fields need to be redefined, so that the kinetic terms are properly normalized

and diagonal. The first step is to redefine the gauge fields

GAµ = GAµ
(
1 + CHGv

2
T

)
, W I

µ =WI
µ

(
1 +CHW v

2
T

)
, Bµ = Bµ

(
1 + CHBv

2
T

)
. (5.18)

The modified coupling constants are

g3 = g3
(
1 + CHG v

2
T

)
, g2 = g2

(
1 + CHW v2T

)
, g1 = g1

(
1 + CHB v

2
T

)
, (5.19)

so that the products g3G
A
µ = g3GAµ , etc. are unchanged. This takes care of the gluon terms.

The electroweak terms are

L = −1

2
W+
µνWµν

− −
1

4
W3
µνWµν

3 −
1

4
Bµν Bµν −

1

2

(
v2TCHWB

)
W3
µνBµν +

1

4
g2

2v2TW+
µW−µ

+
1

8
v2T (g2W3

µ − g1Bµ)2 +
1

16
v4TCHD(g2W3

µ − g1Bµ)2. (5.20)

The mass eigenstate basis is given by [65]
[
W3
µ

Bµ

]
=

[
1 −1

2 v
2
T CHWB

−1
2 v

2
T CHWB 1

] [
cos θ sin θ

− sin θ cos θ

][
Zµ
Aµ

]
, (5.21)
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where the rotation angle is

tan θ =
g1
g2

+
v2T
2
CHWB

[
1− g1

2

g2
2

]
, (5.22)

so that

sin θ =
g1√

g1
2 + g2

2

[
1 +

v2T
2

g2
g1

g2
2 − g12

g2
2 + g1

2CHWB

]
,

cos θ =
g2√

g1
2 + g2

2

[
1− v2T

2

g1
g2

g2
2 − g12

g2
2 + g1

2CHWB

]
. (5.23)

The photon is massless, as it must be by gauge invariance, since U(1)Q is unbroken. The

W and Z masses are

M2
W =

g2
2v2T
4

,

M2
Z =

v2T
4
(g1

2 + g2
2) +

1

8
v4TCHD(g1

2 + g2
2) +

1

2
v4T g1g2CHWB. (5.24)

The covariant derivative is

Dµ = ∂µ + i
g2√
2

[
W+
µ T

+ +W−
µ T

−
]
+ i gZ

[
T3 − s2Q

]
Zµ + i eQAµ, (5.25)

where Q = T3 + Y , and the effective couplings are given by

e =
g1g2√
g2

2 + g1
2

[
1− g1g2

g2
2 + g1

2 v
2
TCHWB

]
= g2 sin θ − 1

2
cos θ g2 v

2
T CHWB,

gZ =
√
g2

2 + g1
2 +

g1g2√
g2

2 + g1
2
v2TCHWB =

e

sin θ cos θ

[
1 +

g1
2 + g2

2

2g1g2
v2TCHWB

]
,

s2 = sin2 θ =
g1

2

g2
2 + g1

2 +
g1g2(g2

2 − g12)
(g1

2 + g2
2)2

v2TCHWB. (5.26)

The ρ parameter, defined as the ratio of charged and neutral currents at low energies [66], is

ρ ≡ g2
2M2

Z

gZ
2M2

W

= 1 +
1

2
v2T CHD. (5.27)

Measurements of the W and Z masses and couplings, and the photon coupling fix g1, g2, vT ,

CHWB and CHD. The couplings of the gauge bosons to fermions are also modified, and a

recent discussion can be found in Ref. [67].

5.5 RGE for CH , CHD, CH�

The discussion in Sections 5.1–5.4 studied the impact of higher dimensional operators on the

measured SM parameters at tree level. The coefficients CHD, etc. of the higher dimension

operators that enter the expressions are renormalized at the low scale, and are related to the
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parameters at the high scale Λ by the RGE. As mentioned earlier, the RGE contributions

are the same as the log Λ/mH enhanced contributions from the finite parts of the one-loop

diagrams.

The RGE for CH , CHD and CH� which enter the Higgs and gauge Lagrangian are

ĊH =

(
108λ + 6Y (S)− 9

2
g21 −

27

2
g22

)
CH − 12g21y

2
h

(
4g21y

2
h + g22 − 4λ

)
CHB

− 3g22
(
4g21y

2
h + 3g22 − 12λ

)
CHW − 6g1g2yh

(
4g21y

2
h + g22 − 4λ

)
CHWB

− 3

4

(
(4y2hg

2
1 + g22)

2 + 8(g22 − 4g21y
2
h)λ− 64λ2

)
CHD

+
40

3
(g22λ− 12λ2)CH� +

16g22λ

3
C

(3)
Hl
tt

+ 16g22λC
(3)
Hq
tt

+ 8λ(η1 + η2)

− 4

(
[YeY

†
e Ye]wvCeH

vw
+ 3[YdY

†
d Yd]wvCdH

vw
+ 3[YuY

†
uYu]wvCuH

vw
+ h.c.

)
, (5.28)

ĊH� =

(
−16

3
y
2
h g

2
1 − 4 g22 + 24λ + 4Y (S)

)
CH� + 2g22 C

(3)
Hl
tt

+ 2g22NcC
(3)
Hq
tt

+
20

3
g21 y

2
hCHD

+
4 g21 yh

3

(
Nc yd CHd

tt
+ yeCHe

tt
+ 2yl C

(1)
Hl
tt

+ 2NcyqC
(1)
Hq
tt

+NcyuC
(1)
Hu
tt

)
− 2 η3, (5.29)

ĊHD =

(
−10

3
y
2
h g

2
1 +

9

2
g22 + 12λ + 4Y (S)

)
CHD +

80

3
g21 y

2
hCH�

+
16 g21 yh

3

(
Nc ydCHd

tt
+ yeCHe

tt
+ 2yl C

(1)
Hl
tt

+ 2NcyqC
(1)
Hq
tt

+NcyuC
(1)
Hu
tt

)
− 2 η4, (5.30)

where η1,2,3,4 are defined in our previous paper Ref. [10]. The precision electroweak parameter

T is CHD, so these RGE are also used in Sec. 5.11. Note that the dimension-six operator

coefficients from the operators in parentheses on the second lines of Eqs. (5.29) and (5.30)

drop out of the running of the combination (CH� − CHD/4) appearing in cH,kin. The RGE

for CHWB is given in Sec. 5.11.

The RGE in Eqs. (5.28)–(5.30) depend on other coefficients in L(6). If the scale Λ is a

few TeV, the RGE can be integrated perturbatively, so that

C(µ) ≈ C(Λ)− 1

16π2
γC ln

Λ

µ
+ . . . where Ċ = γC , (5.31)

and the . . . are part of the leading-log series γ2C ln2 Λ/µ given by exact integration of the RGE.

The ln Λ/µ terms in Eq. (5.31) must be the same as the lnµ terms in the finite parts of the

one-loop graphs. Thus the anomalous dimensions are another way of computing the ln Λ/µ

enhanced terms in the finite parts of the one-loop graphs.
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5.6 h→ ff

The decay of the Higgs boson into fermions is another important test of the symmetry breaking

structure of the SM. Define the effective coupling Yb of the b quark to the Higgs by LYuk =

−Yb h b̄ b. The decay width is given by

Γ(h→ b̄ b) =
Y2
b mH Nc

8π

(
1− 4

m2
b

m2
H

)3/2

, (5.32)

where all parameters are renormalized at µ ∼ mH .

In the SM, the effective coupling of the b quark to the Higgs field can be predicted

very accurately. The b-quark mass can be determined very precisely from global studies of

B̄ → Xc ℓν̄ and Xsγ [68], and then used to determine the b-quark Yukawa coupling at the

scale mH using the SM RGE. The relation Yb =
√
2mb/v between the Higgs coupling and

quark mass is modified in the SM EFT, and is given by Eq. (5.12), with Yb = [Yd]bb, and the

relation between v and GF is modified as in Eq. (5.14) due to tree level effects from L(6).
The scaling of parameters from mb to mH is also modified. The dimension-six operator

contribution to the one-loop running of the effective coupling of the SM Higgs to fermions is

given in Ref. [12]. We repeat the result for the down quarks here for the sake of completeness.8

The running of the Yd is modified by the terms

µ
d

dµ
[Yd]rs =

m2
H

16π2

[
3C∗

dH
sr
− CH�[Yd]rs +

1

2
CHD[Yd]rs + [Yd]rt

(
C

(1)
Hq
ts

+ 3C
(3)
Hq
ts

)
− CHd

rt
[Yd]ts

− [Yu]tsC
∗
Hud
tr
− 2

(
C

(1)
qd
psrt

+ cF,3C
(8)
qd
psrt

)
[Yd]tp + Cledq

ptrs
[Ye]tp +NcC

(1)∗
quqd
ptsr

[Yu]
∗
tp

+
1

2

(
C

(1)∗
quqd
sptr

+ cF,3C
(8)∗
quqd
sptr

)
[Yu]

∗
pt

]
. (5.33)

These terms are of order v2/Λ2, and are just as important as the running of the CψH and

cH,kin contributions in Eq. (5.12), and must be included for a consistent calculation.

The net effect of including the RGE in Eq. (5.12) and Eq. (5.33) is to introduce a shift of

the form

Γ(h→ b̄ b) =
(Yb +∆Yb)2mH Nc

8π

(
1− 4

m2
b

m2
H

)3/2

, (5.34)

where the running effects induced by new physics are included in ∆Yb:

∆Yb =
m2
H

16π2
log

(
mH

mb

)
C1 +

m2
H

16π2
log
(mH

Λ

)
C2. (5.35)

8Note that the usual one loop running of the SM parameters summarized in Ref. [69–71] should be added

to this result for the full scale dependence of these effective couplings in the SM EFT.
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The expression for C1 is obtained by setting r = s = 3 in the expression in square brackets

on the r.h.s. of Eq. (5.33). The expression for C2 is

C2 =
1

2
√
2λ

[Yd]33

(
ĊH� −

1

4
ĊHD

)
− 3

4λ
Ċ∗
dH
33

(5.36)

where the anomalous dimensions ĊH�, ĊHD, and ĊdH are given in Eqs. (5.29), (5.30) and

Sec. C.5 respectively. Note that as we are considering Λ ∼ TeV, the log enhancement is

modest and of about the same size for running from mb to mH and from Λ to mH . The

log(mH/mb) contribution in Eq. (5.35), and analogous terms in other amplitudes, have been

neglected in Ref. [20], and need to be included for a consistent calculation including 1/Λ2

RGE effects.

The discussion above also applies to Higgs decays into other fermions, such as cc and

τ+τ−. Using newly developed charm tagging techniques [72], it may be possible to measure

deviations in Γ(h→ c̄ c) at the LHC (see the discussion in Ref. [73]).

There are also flavor-changing Higgs-fermion couplings from L(6), which contribute to

flavor-changing Higgs decays, such as h → bs. These do not interfere with the SM Higgs

amplitude, which is flavor diagonal, so the flavor-changing decay rates are order 1/Λ4. Nev-

ertheless, as the running of CeH , CdH and CuH is not the same as the running of the SM

Yukawa couplings, searches for Higgs flavor violation is well-motivated. For some recent work

on this subject, see Refs. [74, 75].

5.7 h→WW and h→ ZZ

The h → WW and h → ZZ amplitudes receive direct contributions from L(6). The relevant

CP -even Lagrangian terms are

L = (DµH)†(DµH)− 1

4

(
W I
µνW

Iµν +BµνB
µν
)
,

+ CHW QHW + CHB QHB + CHWBQHWB + CHDQHD, (5.37)

which lead to the interactions

L =
1

4
g2

2vTh
[
(W1

µ)
2 + (W2

µ)
2
]
[1 + cH,kin] + CHW vTh

[
(W1

µν)
2 + (W2

µν)
2
]

(5.38)

for the W , and

L =
1

4
(g2

2 + g1
2)vTh(Zµ)2

[
1 + cH,kin + v2TCHD

]
+

1

2
g1g2v

3
Th(Zµ)2CHWB

+ vTh(Zµν)2
(
g2

2CHW + g1
2CHB + g1g2CHWB

g2
2 + g1

2

)
(5.39)

for the Z.

A ratio of deviations in the SM gauge boson coupling to the Higgs, reported in [76], is

defined as

λWZ ≡
Γ(h→WW )

Γ(h→ WW )SM

Γ(h→ ZZ)SM
Γ(h→ ZZ)

(5.40)
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From Eqs. (5.38,5.39), we see that cH,kin cancels out in λWZ , but there are corrections from the

Higgs-gauge operators CHW , CHB and CHWB . This correction depends on the off-shellness

of the W and Z, since it is proportional to the field-strength tensors, and thus momentum-

dependent. In the SM EFT, the ratio λWZ depends on the L(6) parameters CHW , CHB
and which are not custodial SU(2) violating, as well as CHWB and CHD which are custodial

SU(2) violating. The couplings of the gauge bosons to fermions are also modified. For a

recent discussion on these corrections in this basis see Ref. [67].

5.8 gg → h

The Higgs-gluon operators QHG and Q
HG̃

contribute to the Higgs production rate via gluon

fusion. The L(6) contribution to gg → h is important because the SM amplitude starts at one

loop order, with no tree-level contribution. A similar enhancement of L(6) corrections occurs

for h→ γγ and h→ γZ discussed in the next two sections.

Define Cgg and C̃gg by rescaling CHG and C
HG̃

by g3,

CHG = g23Cgg CHG̃ = g23C̃gg . (5.41)

The scaling by g3 simplifies the RGE, and makes contact with the notation of Refs. [13, 77]

which uses

Cgg = −
cG
2Λ2

C̃gg = −
c̃G
2Λ2

(5.42)

since a factor of −1/(2Λ2) was included in the normalization of the operators. The other

advantage of the rescaling is that the field and coupling constant renormalizations Eq. (5.18)

and (5.19) cancel out.

The change in gg → h relative to the SM is given by [77]

σ(gg → h)

σSM(gg → h)
≃ Γ(h→ gg)

ΓSM(h→ gg)
≃
∣∣∣∣1 +

16π2v2Cgg
Ig

∣∣∣∣
2

+

∣∣∣∣∣
16π2v2C̃gg

Ig

∣∣∣∣∣

2

(5.43)

where Ig ≈ 0.37 is the numerical value of a Feynman parameter integral[77, 78]. We have

neglected corrections from cH,kin and the Yukawa couplings Eq. (5.12) which are v2/Λ2, but

not enhanced by 16π2. If Cgg from BSM physics is loop suppressed as in the SM, then these

terms must be included.

The complete one loop RGE of Cgg and C̃gg are relatively simple,

Ċgg =

(
12λ+ 2Y (S)− 3

2
g21 −

9

2
g22

)
Cgg − 2

(
[Yd]wvCdG

vw
+ [Yu]wvCuG

vw
+ h.c.

)

˙̃
C gg =

(
12λ+ 2Y (S)− 3

2
g21 −

9

2
g22

)
C̃gg + 2

(
i[Yd]wvCdG

vw
+ i[Yu]wvCuG

vw
+ h.c.

)
(5.44)

where

CdG
vw

= g3CdG
vw
, CuG

vw
= g3CuG

vw
, (5.45)
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are rescaled coefficients of the color magnetic dipole operators, and

Y (S) = Tr
[
NcY

†
uYu +NcY

†
d Yd + Y †

e Ye

]
. (5.46)

The Higgs-gluon contributions in the first term of Eq. (5.44) were computed in Ref. [13]. The

only new contribution from the full RGE is the second term from the color dipole operators

which was also calculated in Ref. [19] for the special case of no flavor indices, and with only

a non-zero top quark Yukawa coupling.

5.9 h→ γγ

A very important process is h→ γγ, which played a key role in the discovery of the SM scalar.

Again, it is convenient to define

Cγγ =
1

g22
CHW +

1

g21
CHB −

1

g1g2
CHWB, (5.47)

in terms of which our previously defined coefficients [13, 77] are

Cγγ = − cγγ
2Λ2

, C̃γγ = − c̃γγ
2Λ2

. (5.48)

The h→ γγ rate is

Γ(h→ γγ)

ΓSM(h→ γγ)
≃
∣∣∣∣1 +

8π2v2Cγγ
Iγ

∣∣∣∣
2

+

∣∣∣∣∣
8π2v2C̃γγ

Iγ

∣∣∣∣∣

2

(5.49)

where Iγ ≈ −1.65 is a Feynman parameter integral [77, 78]. Again, as in the gluon case,

we are dropping otherv2/Λ2 terms that must be included if Cγγ from BSM physics is loop

suppressed.

The effective amplitude is

Cγγe
2FµνF

µνhv (5.50)

where

g1 =
e

cos θW
g2 =

e

sin θW
(5.51)

are the definitions of e and θW without a bar. These differ from the coupling constants in

Eq. (5.19) (with a bar) at order 1/Λ2.

The complete one-loop RGE is

Ċγγ =

(
12λ− 3

2
g21 −

9

2
g22 + 2Y (S)

)
Cγγ +

(
8λ− 6g22

) CHWB

g1g2

− 18g2CW +
(
4Cdγ

rs
[Yd]sr + 4Ceγ

rs
[Ye]sr − 8Cuγ

rs
[Yu]sr + h.c.

)
,

˙̃
C γγ =

(
12λ− 3

2
g21 −

9

2
g22 + 2Y (S)

)
C̃γγ +

(
8λ− 6g22

) C
HW̃B

g1g2

− 18g2CW̃ +
(
−4iCdγ

rs
[Yd]sr − 4iCeγ

rs
[Ye]sr + 8iCuγ

rs
[Yu]sr + h.c.

)
. (5.52)
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The first line of each equation is the contribution from the 8 × 8 submatrix of Higgs-gauge

operators computed in Ref. [13]. The second line gives the additional terms including all 59

operators. There are contributions from the triple-gauge operators

QW = ǫIJKW Iν
µ W Jρ

ν WKµ
ρ , Q

W̃
= ǫIJKW Iν

µ W Jρ
ν , W̃Kµ

ρ (5.53)

and the dipole operator coefficients defined in Sec. 5.13.

This result is the first truly complete one-loop result of the RGE running of Cγγ .

5.10 h→ γ Z

The measurement of h→ γ Z at LHC has not yet reached the sensitivity required to observe

the SM rate [79, 80]. Nevertheless, this process is interesting in several BSM scenarios be-

cause a suppression of BSM effects in h→ γ γ, gg due to a pseudo-Goldstone Higgs does not

necessarily imply a suppression of BSM effects in h → γ Z (for a recent discussion see [81]).

We define the effective Wilson coefficient in this case to be

CγZ =
1

g1g2
CHW −

1

g1g2
CHB −

(
1

2g21
− 1

2g22

)
CHWB (5.54)

so that the modification of the decay rate is

Γ(h→ γZ)

ΓSM(h→ γZ)
≃
∣∣∣∣1 +

8π2v2CγZ
IZ

∣∣∣∣
2

+

∣∣∣∣∣
8π2v2C̃γZ

IZ

∣∣∣∣∣

2

(5.55)

IZ ≈ −2.87 [77, 78], again neglecting v2/Λ2 terms due to cH,kin, etc., and our previously

defined coefficients are

CγZ = − cγZ
2Λ2

, C̃γZ = − c̃γZ
2Λ2

(5.56)

The one loop RGE results for the CP-even term

ĊγZ =
1

2
csc θW sec θW

{
(2 cos 2θW + 1)[Yd]wvCdγ

vw
+ (2 cos 2θW − 1)[Ye]wvCeγ

vw

− (4 cos 2θW − 1)[Yu]wvCuγ
vw

+ h.c.
}
+ 2

(
[Yd]wvCdZ

vw
+ [Ye]wvCeZ

vw
− 2[Yu]wvCuZ

vw
+ h.c.

)

+

(
12λ + 2Y (S)− 22

3
e2 +

19

3
e2 sec2 θW −

20

3
e2 csc2 θW

)
CγZ

+ e2
(
11

3
cos 2θW − 10

)
csc θW sec θWCγγ + e

(
3

2
sec θW −

33

2
cot θW csc θW

)
CW

+
(
6e2 − 4e2 csc2 θW + 4λ cos 2θW

)
csc θW sec θW

CHWB

g1g2
. (5.57)

The RGE for
˙̃
C γZ is given by the substitution Yψ → −iYψ, CγZ → C̃γZ , Cγγ → C̃γγ , CW →

C
W̃

, and CHWB → C
HW̃B

, as for the gg and γγ amplitudes.
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5.11 Electroweak precision observables

We are assuming Λ is parametrically higher than the EW scale v, so the usual S, T and U

parametrization [82–85] of the oblique electroweak precision data (EWPD) can be used. An

operator based analysis of EWPD was first developed in Ref. [65]. The standard operator

based approach identifies the S parameter with the operator QHWB, and the T parameter

with the operator QHD,

S =
16π v2

g1 g2
CHWB , T = −2πv2

(
1

g21
+

1

g22

)
CHD . (5.58a)

A shift in the definition of v is order 1/Λ4 for this expression, and we neglect this effect. The

U parameter corresponds to the dimension-eight operator (H†W µνH)(H†WµνH), which we

neglect. A fit that treats mh = 126GeV as an input value [86] to EWPD finds S = 0.03±0.10

and T = 0.05 ± 0.12 with a correlation coefficient between S and T of 0.89.

S and T depend on CHWB and CHD evaluated at the weak scale. The RG evolution of

CHD is given in Eq. (5.30), and the RG evolution of CHWB is

ĊHWB =

(
4λ+ 2Y (S) +

4

3
g22 +

19

3
g21

)
CHWB + 2g1g2 (CHW + CHB) + 3g1g

2
2CW

+ g2

(
3[Yu]wvCuB

vw
− 3[Yd]wvCdB

vw
− [Ye]wvCeB

vw
+ h.c.

)

+ g1

(
5[Yu]wvCuW

vw
+ [Yd]wvCdW

vw
+ 3[Ye]wvCeW

vw
+ h.c.

)
. (5.59)

The T parameter is usually interpreted as a measure of custodial symmetry violation,

whereas the S parameter is considered to be sensitive to the difference between the number

of left-handed and right-handed fermions. Interestingly, the SM EFT one loop RGE does not

mix the operators CHWB, CHD. However, this does not follow from custodial symmetry. The

SM violates custodial symmetry in g1 interactions, and through mass splittings of the SU(2)L
doublets. If we take the limit Yd → Yu, Ye → 0 and yd → yu, then yh → 0 from Eq. (2.9). In

this limit, the standard model preserves custodial SU(2), as does the RGE. This provides a

non-trivial check of our results.

The consequences of the RGE for precision electroweak parameters was studied in Ref. [13].

The RGE allows one to compute the ln Λ/mH contribution to these observables, which was

computed previously in the broken theory [28–30]. Our computation agrees with their results

for the terms they computed, but has additional effects (e.g. due to the top quark Yukawa)

which were not in the previous results.

5.12 Triple gauge boson couplings

Another promising source of information on EW interactions are triple gauge couplings (TGC).

For some recent studies on the phenomenology of these measurements see Refs. [57, 63, 87, 88].

Some of the scale dependence of the operators involved in this process (in another basis) has
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been determined [89, 90]. In the basis used here, only the operator QW directly contributes to

TGC measurements. (Other contributions come about indirectly due to field redefinitions.)

The full RGE of the Wilson coefficient of the operator QW has the simple form

ĊW = (24 − 3b0,2) g
2
2CW , or µ

d

dµ

(
CW
g32

)
= 24g22

(
CW
g32

)
, (5.60)

where b0,2 is the first coefficient in the g2 β-function. The triple gauge boson operators do

not mix with any other dimension-six operators. This multiplicative renormalization can be

largely understood using the results of Ref. [11]. Consequently, TGC measurements provide

a very clean probe of this dimension-six operator.

Recently, Refs. [91, 92] have shown that the decay spectra of the three-body decay

h → V ℓ+ ℓ− are particularly rich sources of information on the possible effects of anoma-

lous couplings of the Higgs boson, and BSM contact interactions. The full decomposition of

the modification of the V ℓ+ ℓ− decay spectra in the operator basis used here was given in

Ref. [67], which shows that the relevant terms depend on the coefficients CWB, CHD, CHW ,

CHB , C1
Hl, C

3
Hl, CHe, as well as the coefficient cH,kin which only modifies the total decay rate.

It has been argued that TGC measurements probe the same physics as h → V ℓ+ ℓ−

decays [57] in the SILH basis. This claim comes about by arbitrarily setting the operator

CW , which is present in the SILH basis, and in the analysis in Ref. [57], to zero. This

operator contributes to TGC measurements, but not to h → V ℓ+ ℓ− decays at tree level.

It is by using this arbitrary choice that Ref. [57] claims a strong relationship between these

experimentally measurable quantities. This makes the results in Ref. [57] model-dependent,

and not general. For example, the exactly solvable model of Ref. [93] produces CW but no

Higgs-lepton operators. In the non-redundant basis of Ref. [9], TGC measurements are also

not related to h→ V ℓ+ ℓ− decays since the combination of Wilson coefficients that contribute

to the two processes is not identical. Measurable results are basis independent, and model

independent results do not arbitrarily set operators to zero, as was done in Ref. [57]. We

disagree with the conclusions of Ref. [57] which are stated as broad, model-independent,

conclusions.

5.13 µ→ eγ, magnetic moments, and electric dipole moments

The lepton dipole operators

L = CeW
rs

lr,aσ
µνes τ

I
abHbW

I
µν + CeB

rs
lr,aHaσ

µνesHaBµν + h.c. (5.61)

contribute to radiative transitions such as µ → eγ which is a remarkably clean window to

physics BSM. In the broken phase, Eq. (5.61) gives the charged lepton operators

L =
ev√
2
Ceγ
rs
erσ

µνPRes Fµν +
ev√
2
CeZ
rs
erσ

µνPRes Zµν + h.c. (5.62)
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where r and s are flavor indices ({ee , eµ , eτ} ≡ {e , µ , τ}) and

Ceγ
rs

=
1

g1
CeB
rs
− 1

g2
CeW
rs

CeZ
rs

= − 1

g2
CeB
rs
− 1

g1
CeW
rs

Cdγ
rs

=
1

g1
CdB
rs
− 1

g2
CdW
rs

CdZ
rs

= − 1

g2
CdB
rs
− 1

g1
CdW
rs

Cuγ
rs

=
1

g1
CuB
rs

+
1

g2
CuW
rs

CuZ
rs

= − 1

g2
CuB
rs

+
1

g1
CuW
rs

(5.63)

CuW has the opposite sign for u-type quarks in Eq. (5.63) because of the opposite sign for

T3L. The RGE for Ceγ is

Ċeγ
rs

=

{
Y (s) + e2

(
12 − 9

4
csc2 θW +

1

4
sec2 θW

)}
Ceγ
rs

+ 2Ceγ
rv
[YeY

†
e ]vs +

(
1

2
+ 2 cos2 θW

)
[Y †
e Ye]rwCeγ

ws
+ e2 (12 cot 2θW )CeZ

rs

− (2 sin θW cos θW ) [Y †
e Ye]rwCeZ

ws
− cot θW [Y †

e ]rs
(
CHWB + iC

HW̃B

)

+ 4e2[Y †
e ]rs

(
Cγγ + iC̃γγ

)
+ e2 (cot θW − 3 tan θW ) [Y †

e ]rs

(
CγZ + iC̃γZ

)

+ 16[Yu]wvC
(3)
lequ
rsvw

. (5.64)

The current experimental limit [94] on BR(µ→ eγ) is 5.7× 10−13 from the MEG experiment,

which implies

v√
2me

Ceγ
µe

. 2.7× 10−4 TeV−2 (5.65)

at the low energy scale µ ∼ mµ.

The lepton Yukawa couplings are diagonal in the mass eigenstate basis, so the µ → eγ

transition amplitude depends on Ceγ , CeZ and C
(3)
lequ. The bound Eq. (5.65) implies

mt

me
C

(3)
lequ
µett

. 1.4× 10−3 TeV−2 (5.66)

using the estimate ln(Λ/mH)/(16π
2) ∼ 0.01 for the renormalization group evolution, and

assuming that this term is the only contribution to Ceγ
µe

at low energies.

The anomalous magnetic moment of the muon is

δaµ = −4mµv√
2

ReCeγ
µµ

(5.67)

which yields the limits

|CHWB| . 0.6TeV−2, |Cγγ | . 4TeV−2,

∣∣∣∣∣
mt

mµ
ReC

(3)
lequ
µµtt

∣∣∣∣∣ . 7 TeV−2, (5.68)
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assuming that each of these is the only contribution to Ceγ
µµ

.

The bound on the electric dipole moment of the electron translates to the limits

∣∣C
HW̃B

∣∣ . 2× 10−3 TeV−2,
∣∣∣C̃γγ

∣∣∣ . 2× 10−2 TeV−2,

∣∣∣∣
mt

me
ImClequ

eett

∣∣∣∣ . 3× 10−4 TeV−2,

(5.69)

using the recently measured upper bound [95], de < 1.05× 10−27e cm from the ACME collab-

oration, again assuming each of these terms is the only contribution.

6 Conclusions

This paper completes the full calculation of the one-loop renormalization of the dimension-

six Lagrangian of the SM EFT. We present all of the remaining gauge terms in the 59 × 59

anomalous dimension matrix of the baryon number conserving operators. The anomalous

dimension matrix of the dimension-six baryon number violating operators have been computed

in Ref. [96].

Many of the results are lengthy, but a few important cases such as gg → h, h → γγ and

h→ γZ have simple RG equations which are given explicitly in this paper. We have computed

the modification of the Higgs mass, self-interactions, and couplings to fermions and gauge

bosons from L(6). The dimension-six terms change the relation between the Higgs vacuum

expectation value and GF , and also contribute to the ρ parameter. The RGE improvement

of all of these relations is now known, and will be useful for future precision studies of the

SM EFT. A complete analysis of the SM EFT is a formidable task, because L(6) has 2499

independent parameters.

We have also discussed how the SM EFT provides a model-independent way to test the

MFV hypothesis, and how the full SM EFT RGE mixes flavor violation between the different

operator sectors. A few applications of our results have been given in this paper.
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A Flavor representations and parameter counting

In this appendix, we briefly discuss the flavor representations of the operators, and the pa-

rameter counting of Table 2.

Operators in classes 1–4 have no flavor indices, and the counting is trivial.
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Class 5 and 6 operator coefficients are ng × ng complex matrices Mrs in flavor space,

with n2g complex entries. The real matrix elements give the n2g CP -even parmeters and the

imaginary matrix elements yield n2g CP -odd entries.

Class 7 operators, other than QHud are hermitian, so their coefficients are ng×ng hermitian

matrices Hrs in flavor space, which can be written as Hrs = Srs + iArs, where S is real-

symmetric and CP -even with ne = ng(ng+1)/2 parameters, and A is real-antisymmetric and

CP -odd, with no = ng(ng − 1)/2 parameters. QHud, which is not hermitian, is an ng × ng
complex matrix with n2g CP -even and n2g CP -odd parameters.

The four-fermion operators in Class 8 are the only non-trivial case. The (LR)(RL) and

(LR)(LR) operators are not hermitian, and each has n4g CP -even and n4g CP -odd parameters,

since the operator has 4 independent flavor indices. The (LL)(RR) operators are the product

of L and R currents, each of which has ne CP -even and no CP -odd components, for n2e + n2o
CP -even and 2neno CP -odd terms. The counting for (LL)(LL) and (RR)(RR) operators

when the currents are different, Q
(1,3)
lq , Qeu, Qed, Q

(1,3)
ud , is the same as for the (LL)(RR)

operators. The interesting case is for Qll, Q
(1,3)
qq , Quu, Qdd where the two currents are identical,

so that all four flavor indices transform under the same SU(ng) flavor group. The operators

transform as the 1 +1+adj+adj+aa+ ss where adj is the adjoint representation, aa is the

representation T
[ij]
[kl] antisymmetric in the upper and lower indices, and ss is the representation

T
(ij)
(kl) symmetric in the upper and lower indices.9 The aa representation vanishes for ng = 3.

The singlet has one CP -even parameter, the adjoint has (ng − 1)(ng + 2)/2 CP -even and

ng(ng − 1)/2 CP -odd parameters, aa has ng(ng − 3)(n2g + ng + 2)/8 CP -even and ng(ng −
3)(ng−1)(ng+2)/8 CP -odd parameters, and ss has ng(ng−1)(ng+1)(ng+2)/8 CP -even and

ng(ng − 1)(n2g + 3ng − 2)/8 CP -odd parameters. The operator Qee is a special case, because

of the Fierz identity

(ēpγµer)(ēsγµet) = (ēsγµer)(ēpγµet), (A.1)

which implies that the operator must be symmetric in the two e indices and in the two e

indices. This identity does not hold for the other fermions, because they have SU(2) or color

indices. Qee transforms as 1 + adj + ss because of the Fierz identity.

Adding up the individual contributions gives Table 2.

9The relevant group theory results can be found, for example, in Refs. [101, 102].
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B Conversion of Pi operators to the standard basis

The equations of motion can be used to express the operators Pi in the standard basis. The

identifications are

PB =
1

2
yhg

2
1QH� + 2g21yhQHD +

1

2
g21

[
ylQ

(1)
Hl
tt

+ yeQHe
tt

+ yqQ
(1)
Hq
tt

+ yuQHu
tt

+ ydQHd
tt

]
,

PW =
3

4
g22QH� −

1

2
g22m

2
H(H

†H)2 + 2g22λQH +
1

4
g22

[
Q

(3)
Hl
tt

+Q
(3)
Hq
tt

]

+
1

2
g22

(
[Y †
u ]rsQuH

rs
+ [Y †

d ]rsQdH
rs

+ [Y †
e ]rsQeH

rs
+ h.c.

)
,

PHB =
1

2
g21yhQH� + 2g21yhQHD −

1

2
yhg

2
1QHB −

1

4
g1g2QHWB

+
1

2
g21

[
ylQ

(1)
Hl
tt

+ yeQHe
tt

+ yqQ
(1)
Hq
tt

+ yuQHu
tt

+ ydQHd
tt

]
,

PHW =
3

4
g22QH� −

1

2
g22m

2
H(H

†H)2 + 2g22λQH −
1

4
g22QHW −

1

2
yhg1g2QHWB +

1

4
g22

[
Q

(3)
Hl +Q

(3)
Hq

]

+
1

2
g22

(
[Y †
u ]rsQuH

rs
+ [Y †

d ]rsQdH
rs

+ [Y †
e ]rsQeH

rs
+ h.c.

)
,

PT = −QH� − 4QHD. (B.1)

C Results

The renormalization group equations by operator class are given below. The complete RG

equations for the dimension-six operators are given by adding Eqs. (6.1)–(6.4) of Ref. [12],

the equations in the appendices of Ref. [10] and the equations given below. Eqs. (4.3)–(4.5)

of Ref. [12] give the renormalization group evolution of SM couplings due to dimension-six

operators.

The parameters η1−5 are defined in the appendix of Ref. [10]. Some equations use ξB ,

defined by

ξB =
4

3
yh (CH� + CHD) +

8

3

[
2ylC

(1)
Hl
tt

+ 2yqNcC
(1)
Hq
tt

+ yeCHe
tt

+ yuNcCHu
tt

+ ydNcCHd
tt

]
(C.1)

The other parameters are cA,2 = 2, cF,2 = 3/4, cA,3 = Nc, cF,3 = (N2
c −1)/(2Nc) with Nc = 3,

b0,1 = −1/6− 20ng/9, b0,2 = 43/6 − 4ng/3 and b0,3 = 11 − 4ng/3.

C.1 X3

ĊG = (12cA,3 − 3b0,3) g
2
3CG ĊG̃ = (12cA,3 − 3b0,3) g

2
3CG̃

ĊW = (12cA,2 − 3b0,2) g
2
2CW Ċ

W̃
= (12cA,2 − 3b0,2) g

2
2CW̃
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C.2 H6

ĊH =

(
−27

2
g22 −

9

2
g21

)
CH + λ

[
40

3
g22CH� +

(
−6g22 + 24g21y

2
h

)
CHD

]
− 3

4

(
4y2hg

2
1 + g22

)2
CHD

+ 12λ
(
3g22CHW + 4g21y

2
hCHB + 2g1g2yhCHWB

)
−
(
12g21g

2
2y

2
h + 9g42

)
CHW

−
(
48g41y

4
h + 12g21g

2
2y

2
h

)
CHB −

(
24g31g2y

3
h + 6g1g

3
2yh

)
CHWB +

16

3
λg22

(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)

C.3 H4D2

ĊH� = −
(
4g22 +

16

3
g21y

2
h

)
CH� +

20

3
g21y

2
hCHD + 2g22

(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)

+
4

3
g21yh

(
NcyuCHu

tt
+NcydCHd

tt
+ yeCHe

tt
+ 2NcyqC

(1)
Hq
tt

+ 2ylC
(1)
Hl
tt

)

ĊHD =
80

3
g21y

2
hCH� +

(
9

2
g22 −

10

3
g21y

2
h

)
CHD

+
16

3
g21yh

(
NcyuCHu

tt
+NcydCHd

tt
+ yeCHe

tt
+ 2NcyqC

(1)
Hq
tt

+ 2ylC
(1)
Hl
tt

)

C.4 X2H2

ĊHG =
(
−6y2hg21 −

9

2
g22 − 2b0,3g

2
3

)
CHG

ĊHB =
(
2y2hg

2
1 −

9

2
g22 − 2b0,1g

2
1

)
CHB + 6g1g2yhCHWB

ĊHW = −15g32CW +
(
−6y2hg21 −

5

2
g22 − 2b0,2g

2
2

)
CHW + 2g1g2yhCHWB

ĊHWB = 6g1g
2
2yhCW +

(
−2y2hg21 +

9

2
g22 − b0,1g21 − b0,2g22

)
CHWB + 4g1g2yhCHB + 4g1g2yhCHW

ĊHG̃ =
(
−6y2hg21 −

9

2
g22 − 2b0,3g

2
3

)
CHG̃

ĊHB̃ =
(
2y2hg

2
1 −

9

2
g22 − 2b0,1g

2
1

)
CHB̃ + 6g1g2yhCHW̃B

Ċ
HW̃

= −15g32CW̃ +
(
−6y2hg21 −

5

2
g22 − 2b0,2g

2
2

)
C
HW̃

+ 2g1g2yhCHW̃B

Ċ
HW̃B

= 6g1g
2
2yhCW̃ +

(
−2y2hg21 +

9

2
g22 − b0,1g21 − b0,2g22

)
C
HW̃B

+ 4g1g2yhCHB̃ + 4g1g2yhCHW̃
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C.5 ψ2H3

ĊeH
rs

= [Y †
e ]rs

[
10

3
g22CH� +

(
−3

2
g22 + 6g21y

2
h

)
CHD

]
−
[
3(3y2l + 3y2e − 4ylye)g

2
1 +

27

4
g22

]
CeH
rs

+ 3[Y †
e ]rs

(
3g22(CHW + iC

HW̃
)

+ 4(y2h + 2ylye)g
2
1(CHB + iC

HB̃
) + 2g1g2yl(CHWB + iC

HW̃B
)
)
− 3
(
3g1yeCeB

rt
+ g2CeW

rt

)
[YeY

†
e ]ts

− 3[Y †
e Ye]rv

(
2g1(yl + ye)CeB

vs
− g2CeW

vs

)
− 6

(
4g31y

2
hye + 4g31y

2
hyl + g22g1yh

)
CeB
rs

− 3
(
4g21g2yhye + 4g21g2yhyl + 3g32

)
CeW
rs

+
(
3g22 + 12g21ylyh

)
[Y †
e ]rtCHe

ts

+ 12g21yeyhC
(1)
Hl
rt

[Y †
e ]ts + 12g21yeyhC

(3)
Hl
rt

[Y †
e ]ts +

4

3
g22 [Y

†
e ]rs

(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)

ĊuH
rs

= [Y †
u ]rs

[
10

3
g22CH� +

(
−3

2
g22 + 6g21y

2
h

)
CHD

]
−
[
3(3y2q + 3y2u − 4yqyu)g

2
1 +

27

4
g22 + 6cF,3g

2
3

]
CuH
rs

+ 3[Y †
u ]rs

(
8g23cF,3(CHG + iCHG̃) + 3g22(CHW + iC

HW̃
)

+ 4(y2h + 2yqyu)g
2
1(CHB + iCHB̃)− 2yqg1g2(CHWB + iC

HW̃B
)
)

− 12[Y †
d Yd]rtg2CuW

ts
− 6g2CdW

rt
[YdY

†
u ]ts − 3

(
4g3cF,3CuG

rt
+ g2CuW

rt
+ (3yu + yd)g1CuB

rt

)
[YuY

†
u ]ts

− 3[Y †
uYu]rv

(
4cF,3g3CuG

vs
− g2CuW

vs
+ 2(yq + yu)g1CuB

vs

)
− 6

(
4g31y

2
hyu + 4g31y

2
hyq − g22g1yh

)
CuB
rs

+ 3
(
4g21g2yhyu + 4g21g2yhyq − 3g32

)
CuW
rs
−
(
3g22 − 12g21yqyh

)
[Y †
u ]rtCHu

ts

+ 3g22 [Y
†
d ]rtC

∗
Hud
st

+ 12g21yuyhC
(1)
Hq
rt

[Y †
u ]ts − 12g21yuyhC

(3)
Hq
rt

[Y †
u ]ts +

4

3
g22 [Y

†
u ]rs

(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)

ĊdH
rs

= [Y †
d ]rs

[
10

3
g22CH� +

(
−3

2
g22 + 6g21y

2
h

)
CHD

]
−
[
3(3y2q + 3y2d − 4yqyd)g

2
1 +

27

4
g22 + 6cF,3g

2
3

]
CdH
rs

+ 3[Y †
d ]rs

(
8cF,3g

2
3(CHG + iC

HG̃
) + 3g22(CHW + iC

HW̃
)

+ 4(y2h + 2yqyd)g
2
1(CHB + iCHB̃) + 2yqg1g2(CHWB + iC

HW̃B
)
)

− 12[Y †
uYu]rtg2CdW

ts
− 6g2CuW

rt
[YuY

†
d ]ts − 3

(
4cF,3g3CdG

rt
+ g2CdW

rt
+ (3yd + yu)g1CdB

rt

)
[YdY

†
d ]ts

− 3[Y †
d Yd]rt

(
4cF,3g3CdG

ts
− g2CdW

ts
+ 2 (yq + yd) g1CdB

ts

)
− 6

(
4g31y

2
hyd + 4g31y

2
hyq + g22g1yh

)
CdB
rs

− 3
(
4g21g2yhyd + 4g21g2yhyq + 3g32

)
CdW
rs

+
(
3g22 + 12g21yqyh

)
[Y †
d ]rtCHd

ts

+ 3g22 [Y
†
u ]rtCHud

ts
+ 12g21ydyhC

(1)
Hq
rt

[Y †
d ]ts + 12g21ydyhC

(3)
Hq
rt

[Y †
d ]ts +

4

3
g22 [Y

†
d ]rs

(
C

(3)
Hl
tt

+NcC
(3)
Hq
tt

)
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C.6 ψ2XH

ĊeW
rs

=
[
(3cF,2 − b0,2) g22 +

(
−3y2e + 8yeyl − 3y2l

)
g21
]
CeW
rs

+ g1g2(3yl − ye)CeB
rs

− [Y †
e ]rs

(
g2(CHW + iC

HW̃
) + g1(yl + ye)(CHWB + iC

HW̃B
)
)

ĊeB
rs

=
[
−3cF,2g22 +

(
3y2e + 4yeyl + 3y2l − b0,1

)
g21
]
CeB
rs

+ 4cF,2g1g2(3yl − ye)CeW
rs

− [Y †
e ]rs

(
2g1(yl + ye)(CHB + iCHB̃) +

3

2
g2(CHWB + iC

HW̃B
)
)

ĊuG
rs

=
[
(10cF,3 − 4cA,3 − b0,3) g23 − 3cF,2g

2
2 +

(
−3y2u + 8yuyq − 3y2q

)
g21
]
CuG
rs

+ 8cF,2g2g3CuW
rs

+ 4g1g3(yu + yq)CuB
rs
− 4[Y †

u ]rsg3(CHG + iCHG̃) + 3g23cA,3[Y
†
u ]rs

(
CG + iCG̃

)

ĊuW
rs

=
[
2cF,3g

2
3 + (3cF,2 − b0,2) g22 +

(
−3y2u + 8yuyq − 3y2q

)
g21
]
CuW
rs

+ 2cF,3g2g3CuG
rs

+ g1g2(3yq − yu)CuB
rs
− [Y †

u ]rs
(
g2(CHW + iC

HW̃
)− g1(yq + yu)(CHWB + iC

HW̃B
)
)

ĊuB
rs

=
[
2cF,3g

2
3 − 3cF,2g

2
2 +

(
3y2u + 4yuyq + 3y2q − b0,1

)
g21
]
CuB
rs

+ 4cF,3g1g3 (yu + yq)CuG
rs

+ 4cF,2g1g2(3yq − yu)CuW
rs
− [Y †

u ]rs
(
2g1(yq + yu)(CHB + iCHB̃)−

3

2
g2(CHWB + iC

HW̃B
)
)

ĊdG
rs

=
[
(10cF,3 − 4cA,3 − b0,3) g23 − 3cF,2g

2
2 +

(
−3y2d + 8ydyq − 3y2q

)
g21
]
CdG
rs

+ 8cF,2g2g3CdW
rs

+ 4g1g3(yd + yq)CdB
rs
− 4[Y †

d ]rsg3(CHG + iC
HG̃

) + 3g23cA,3[Y
†
d ]rs

(
CG + iC

G̃

)

ĊdW
rs

=
[
2cF,3g

2
3 + (3cF,2 − b0,2) g22 +

(
−3y2d + 8ydyq − 3y2q

)
g21
]
CdW
rs

+ 2cF,3g2g3CdG
rs

+ g1g2(3yq − yd)CdB
rs
− [Y †

d ]rs
(
g2(CHW + iC

HW̃
) + g1(yq + yd)(CHWB + iC

HW̃B
)
)

ĊdB
rs

=
[
2cF,3g

2
3 − 3cF,2g

2
2 +

(
3y2d + 4ydyq + 3y2q − b0,1

)
g21
]
CdB
rs
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ĊHd
rs

=
1

2
ξBg

2
1δrsyd +

4

3
g21y

2
hCHd

rs
+

4

3
g21NcydyhC dd

rsww
+

4

3
g21ydyhC dd

rwws
+

4

3
g21ydyhC dd

wsrw
+

4

3
g21NcydyhC dd

wwrs

+
4

3
g21yeyhC ed

wwrs
+

8

3
g21yhylC ld

wwrs
+

8

3
g21NcyhyqC

(1)
qd

wwrs

+
4

3
g21NcyhyuC

(1)
ud

wwrs
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Ċ lu
prst

=
4

3
g21yhylCHu

st
δpr +

4

3
g21yhyuC

(1)
Hl
pr

δst +
8

3
g21ylyuC ll

prww
δst +

8

3
g21ylyuC ll

wwpr
δst +

4

3
g21ylyuC ll

pwwr
δst

+
4

3
g21ylyuC ll

wrpw
δst +

8

3
g21NcyqyuC

(1)
lq

prww

δst +
8

3
g21NcylyqC

(1)
qu
wwst

δpr +
4

3
g21Ncy

2
uC lu

prww
δst +

8

3
g21y

2
l C lu

wwst
δpr

+
4

3
g21NcydyuC ld

prww
δst +

4

3
g21yeyuC le

prww
δst +

4

3
g21NcydylC

(1)
ud
stww

δpr +
4

3
g21yeylC eu

wwst
δpr

+
4

3
g21NcylyuC uu

stww
δpr +

4

3
g21NcylyuC uu

wwst
δpr +

4

3
g21ylyuC uu

swwt
δpr +

4

3
g21ylyuC uu

wtsw
δpr − 12ylyug

2
1C lu

prst

– 39 –
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µ W Jρ
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Qee (ēpγµer)(ēsγ
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µet)

Q
(1)
qu (q̄pγµqr)(ūsγ
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Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [9]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices.
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Class Nop CP -even CP -odd

ng 1 3 ng 1 3

1 4 2 2 2 2 2 2

2 1 1 1 1 0 0 0

3 2 2 2 2 0 0 0

4 8 4 4 4 4 4 4

5 3 3n2
g 3 27 3n2

g 3 27

6 8 8n2
g 8 72 8n2

g 8 72

7 8 1
2
ng(9ng + 7) 8 51 1

2
ng(9ng − 7) 1 30

8 : (LL)(LL) 5 1
4
n2
g(7n

2
g + 13) 5 171 7

4
n2
g(ng − 1)(ng + 1) 0 126

8 : (RR)(RR) 7 1
8
ng(21n

3
g + 2n2

g + 31ng + 2) 7 255 1
8
ng(21ng + 2)(ng − 1)(ng + 1) 0 195

8 : (LL)(RR) 8 4n2
g(n

2
g + 1) 8 360 4n2

g(ng − 1)(ng + 1) 0 288

8 : (LR)(RL) 1 n4
g 1 81 n4

g 1 81

8 : (LR)(LR) 4 4n4
g 4 324 4n4

g 4 324

8 : All 25 1
8
ng(107n

3
g + 2n2

g + 89ng + 2) 25 1191 1
8
ng(107n

3
g + 2n2

g − 67ng − 2) 5 1014

Total 59 1
8
(107n4

g + 2n3
g + 213n2

g + 30ng + 72) 53 1350 1
8
(107n4

g + 2n3
g + 57n2

g − 30ng + 48) 23 1149

Table 2. Number of CP -even and CP -odd coefficients in L(6) for ng flavors. The total number of
coefficients is (107n4

g + 2n3
g + 135n2

g + 60)/4, which is 76 for ng = 1 and 2499 for ng = 3.

H6 H4D2 yψ2H3 ψ2H2D ψ4 g2X2H2 gyψ2XH g3X3

Class 2 3 5 7 8 4 6 1

NDA Weight 2 1 1 1 1 0 0 −1

H6 λ, y2, g2 λ2, λg2, g4 λy2, y4 λy2, λg2,///y4 0 λg4, g6 0 ////λg6

H4D2 0 λ, y2, g2 ///y2 y2, g2 0 ///g4 /////y2g2 ///g6

yψ2H3 0 λ, y2, g2 λ, y2, g2 λ, y2, g2 λ, y2 g4 ////g2λ, g4, g2y2 ///g6

ψ2H2D 0 g2, y2 ///y2 g2,//λ, y2 g2, y2 ///g4 /////g2y2 ///g6

ψ4 0 0 0 g2, y2 g2, y2 0 g2y2 ///g6

g2X2H2 0 /1 0 /1 0 λ, y2, g2 y2 g4

gyψ2XH 0 0 /1 /1 1 g2 g2, y2 g4

g3X3 0 0 0 0 0 /1 0 g2

Table 3. Form of the one-loop anomalous dimension matrix γ̂ij for dimension-six operators Q̂i

rescaled according to naive dimensional analysis. The operators are ordered by NDA weight, rather
than by operator class. The possible entries allowed by the one-loop Feynman graphs are shown. The
cross-hatched entries vanish.
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